120 research outputs found

    RGB-T salient object detection via fusing multi-level CNN features

    Get PDF
    RGB-induced salient object detection has recently witnessed substantial progress, which is attributed to the superior feature learning capability of deep convolutional neural networks (CNNs). However, such detections suffer from challenging scenarios characterized by cluttered backgrounds, low-light conditions and variations in illumination. Instead of improving RGB based saliency detection, this paper takes advantage of the complementary benefits of RGB and thermal infrared images. Specifically, we propose a novel end-to-end network for multi-modal salient object detection, which turns the challenge of RGB-T saliency detection to a CNN feature fusion problem. To this end, a backbone network (e.g., VGG-16) is first adopted to extract the coarse features from each RGB or thermal infrared image individually, and then several adjacent-depth feature combination (ADFC) modules are designed to extract multi-level refined features for each single-modal input image, considering that features captured at different depths differ in semantic information and visual details. Subsequently, a multi-branch group fusion (MGF) module is employed to capture the cross-modal features by fusing those features from ADFC modules for a RGB-T image pair at each level. Finally, a joint attention guided bi-directional message passing (JABMP) module undertakes the task of saliency prediction via integrating the multi-level fused features from MGF modules. Experimental results on several public RGB-T salient object detection datasets demonstrate the superiorities of our proposed algorithm over the state-of-the-art approaches, especially under challenging conditions, such as poor illumination, complex background and low contrast

    Part-Object Relational Visual Saliency

    Get PDF
    Recent years have witnessed a big leap in automatic visual saliency detection attributed to advances in deep learning, especially Convolutional Neural Networks (CNNs). However, inferring the saliency of each image part separately, as was adopted by most CNNs methods, inevitably leads to an incomplete segmentation of the salient object. In this paper, we describe how to use the property of part-object relations endowed by the Capsule Network (CapsNet) to solve the problems that fundamentally hinge on relational inference for visual saliency detection. Concretely, we put in place a two-stream strategy, termed Two-Stream Part-Object RelaTional Network (TSPORTNet), to implement CapsNet, aiming to reduce both the network complexity and the possible redundancy during capsule routing. Additionally, taking into account the correlations of capsule types from the preceding training images, a correlation-aware capsule routing algorithm is developed for more accurate capsule assignments at the training stage, which also speeds up the training dramatically. By exploring part-object relationships, TSPORTNet produces a capsule wholeness map, which in turn aids multi-level features in generating the final saliency map. Experimental results on five widely-used benchmarks show that our framework consistently achieves state-of-the-art performance. The code can be found on https://github.com/liuyi1989/TSPORTNet

    Few-Cost Salient Object Detection with Adversarial-Paced Learning

    Get PDF
    Detecting and segmenting salient objects from given image scenes has received great attention in recent years. A fundamental challenge in training the existing deep saliency detection models is the requirement of large amounts of annotated data. While gathering large quantities of training data becomes cheap and easy, annotating the data is an expensive process in terms of time, labor and human expertise. To address this problem, this paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only, thus dramatically alleviating human labor in training models. To this end, we name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario. Essentially, APL is derived from the self-paced learning (SPL) regime but it infers the robust learning pace through the data-driven adversarial learning mechanism rather than the heuristic design of the learning regularizer. Comprehensive experiments on four widely-used benchmark datasets demonstrate that the proposed method can effectively approach to the existing supervised deep salient object detection models with only 1k human-annotated training images. The project page is available at https://github.com/hb-stone/FC-SOD

    Employing deep part-object relationships for salient object detection

    Get PDF
    Despite Convolutional Neural Networks (CNNs) based methods have been successful in detecting salient objects, their underlying mechanism that decides the salient intensity of each image part separately cannot avoid inconsistency of parts within the same salient object. This would ultimately result in an incomplete shape of the detected salient object. To solve this problem, we dig into part-object relationships and take the unprecedented attempt to employ these relationships endowed by the Capsule Network (CapsNet) for salient object detection. The entire salient object detection system is built directly on a Two-Stream Part-Object Assignment Network (TSPOANet) consisting of three algorithmic steps. In the first step, the learned deep feature maps of the input image are transformed to a group of primary capsules. In the second step, we feed the primary capsules into two identical streams, within each of which low-level capsules (parts) will be assigned to their familiar high-level capsules (object) via a locally connected routing. In the final step, the two streams are integrated in the form of a fully connected layer, where the relevant parts can be clustered together to form a complete salient object. Experimental results demonstrate the superiority of the proposed salient object detection network over the state-of-the-art methods
    • …
    corecore